The Splitting Field of X3 − 2 over Q

نویسنده

  • KEITH CONRAD
چکیده

In Ok, the rational prime 2 has the principal prime factorization (2) = ( 3 √ 2)3, so k has class number 1: the ring Ok has unique factorization. Next we show Ok = Z[ 3 √ 2]. Let α = a+b 3 √ 2+c 3 √ 4 be an algebraic integer, with a, b, c all rational. Computing Trk/Q of α, α 3 √ 2, and α 3 √ 4 we see 3a, 6b, 6c ∈ Z. So the denominators of a, b, and c involve at most 2 and 3. To show 2 and 3 do not appear in the denominator, we consider the situation p-adically for p = 2 and p = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Splitting Field of X3 − 5 over Q

In this note, we calculate all the basic invariants of the number field K = Q(3 √ 5, ω), where ω = (−1 + √ −3)/2 is a primitive cube root of unity. Here is the notation for the fields and Galois groups to be used. Let

متن کامل

On the Elliptic Curves of the Form $y^2 = x^3 − pqx$

‎By the Mordell‎- ‎Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves‎, ‎where p and q are distinct primes‎. ‎We give infinite families of elliptic curves of the form y2=x3-pqx with rank two‎, ‎three and four‎, ‎assuming a conjecture of Schinzel ...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

On the Lagrange resolvents of a dihedral quintic polynomial

Let f(x)= x5+px3+qx2+rx+s ∈Q[x] be an irreducible quintic polynomial with a solvable Galois group. Let x1,x2,x3,x4,x5 ∈ C be the roots of f(x). The splitting field of f is K = Q(x1,x2,x3,x4,x5). Let ζ be a primitive fifth root of unity. The Lagrange resolvents of the root x1 are r1 = ( x1,ζ )= x1+x2ζ+x3ζ+x4ζ+x5ζ ∈K(ζ), r2 = ( x1,ζ )= x1+x2ζ+x3ζ+x4ζ+x5ζ ∈K(ζ), r3 = ( x1,ζ )= x1+x2ζ+x3ζ+x4ζ+x5ζ ∈...

متن کامل

Pk-torsion of Genus Two Curves over 𝔽pm

We determine the isogeny classes of abelian surfaces over Fq whose group of Fq-rational points has order divisible by q . We also solve the same problem for Jacobians of genus-2 curves. In a recent paper [4], Ravnshøj proved: if C is a genus-2 curve over a prime field Fp, and if one assumes that the endomorphism ring of the Jacobian J of C is the ring of integers in a primitive quartic CM-field...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006